Gate 2015 Syllabus for Ecology and Evolution (EY)

Ecology is the scientific study of interactions of organisms with one another and with the physical and chemical environment. Although it includes the study of environmental problems such as pollution, the science of ecology mainly involves research on the natural world from many viewpoints, using many techniques. Modern ecology relies heavily on experiments, both in laboratory and in field settings. These techniques have proved useful in testing ecological theories, and in arriving at practical decisions concerning the management of natural resources.

Gate syllabus For 2015 Ecology And Evolution Subjects

Gate 2015 Syllabus for Ecology and Evolution (EY):


Population ecology; metapopulation dynamics; growth rates; density independent growth; density dependent growth; niche concept; Species interactions: Plant-animal interactions; mutualism, commensalism, competition and predation; trophic interactions; functional ecology; ecophysiology; behavioural ecology.

Community ecology:

Community assembly, organization and evolution; biodiversity: species richness, evenness and diversity indices; endemism; species-area relationships; Ecosystem structure, function and services; nutrient cycles; biomes; habitat ecology; primary and secondary productivity; invasive species; global and climate change; applied ecology.


Origin, evolution and diversification of life; natural selection; levels of selection. Types of selection (stabilizing, directional etc.); sexual selection; genetic drift; gene flow; adaptation; convergence; species concepts; Life history strategies; adaptive radiation; biogeography and evolutionary ecology;
Origin of genetic variation; Mendelian genetics; polygenic traits, linkage and recombination; epistasis, gene-environment interaction; heritability; population genetics;
Molecular evolution; molecular clocks; systems of classification: cladistics and phenetics; molecular systematics; gene expression and evolution.

Mathematics and Quantitative Ecology:

Mathematics and statistics in ecology; Simple functions (linear, quadratic, exponential, logarithmic, etc); concept of derivatives and slope of a function; permutations and combinations; basic probability (probability of random events; sequences of events, etc); frequency distributions and their descriptive statistics (mean, variance, coefficient of variation, correlation, etc).
Statistical hypothesis testing: Concept of p-value; Type I and Type II error, test statistics like t-test and Chi-square test; basics of linear regression and ANOVA.

Behavioural Ecology:

Classical ethology; neuroethology; evolutionary ethology; chemical, acoustic and visual signaling; Mating systems; sexual dimorphism; mate choice; parenting behaviour Competition; aggression; foraging behaviour; predator–prey interactions; Sociobiology: kin selection, altruism, costs and benefits of group-living.